Ultrasonic wave propagation in the corner section of composite laminate structure: Numerical simulations and experiments
نویسندگان
چکیده
Two-dimensional finite element simulations and experiments are presented to examine the ultrasonic wave propagation behavior in the corner section of CFRP (carbon fiber reinforced plastics) laminate structures. The numerical model consists of a right-angle corner section of CFRP laminate immersed in water and subjected to the ultrasonic wave incidence from its inner or outer side. The anisotropic stiffness constants of the unidirectional CFRP are identified experimentally and used to model the curved laminate structure. A commercial finite element analysis code is used to compute the reflection waveforms in the pulse-echo mode, and the effect of the laminate stacking sequence and the wave incidence direction is examined. It is shown that the reflection waveforms for the wave incidence from the outer side of the corner qualitatively resemble those for the plane laminate except that the echo signals of the former are substantially weaker. The numerical simulations are shown to well reproduce the qualitative features of experimental reflection measurements performed for the corner sections of 16-ply CFRP laminate. Experimental results indicate that the porosity content of the corner section can be estimated by the amplitude ratio of the surface and the back-wall echoes when a curvature-dependent calibration relation is properly used.
منابع مشابه
Guided Ultrasonic Waves for Impact Damage Detection in Composite Panels
Carbon fiber laminate composites, consisting of layers of polymer matrix reinforced with high strength carbon fibers, are increasingly employed for aerospace structures. They offer advantages for aerospace applications, e.g., good strength to weight ratio. However, impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Depending on t...
متن کاملExperimental characterisation of Lamb wave propagation through thermoplastic composite ultrasonic welds
Ultrasonic welding is a very promising technique for joining thermoplastic composite (TpC) components in aircraft primary structures [1, 2]. The potential introduction of new lightweight structures in civil aviation has been driving the change towards condition-based maintenance (CBM) as an alternative to the regular inspection interval approach [3]. In turn, CBM has been pushing forward the de...
متن کاملPiezoceramic Element Design and Fabrication for Ultrasonic Transducer of Gas Meter
Ultrasonic transducers play a significant role in generating and receiving the acoustic waves in ultrasonic flowmeters. Depending on the required accuracy, the ultrasonic transducers can be installed either in one pair or more in an ultrasonic flowmeter. The main part of an ultrasonic transducer is its piezoceramic element. In this work, four piezoceramic elements with different diameter to thi...
متن کاملAn Investigation into the Deep Drawing of Fiber-Metal Laminates based on Glass Fiber Reinforced Polypropylene
Abstract Fiber-metal laminates (FMLs) are new type of composite materials which could improve defects of traditional composites in ductility, formability, impact and damage tolerance. Drawing behavior of a thermoplastic based FML was investigated consisting of glass-fiber reinforced polypropylene composite laminate and aluminum AA1200-O as the core and skin layers, respectively. The effects o...
متن کاملNumerical Prediction of Stator Diameter Effect on the Output Torque of Ultrasonic Traveling-wave Motor, using Finite Elements Simulation
Nowadays, piezoelectric materials have wide applications in various industries. Therefore, investigation of these materials and their applications has a special importance. In this paper first, the natural frequencies of a traveling-wave piezoelectric motor are achieved, using finite elements simulations. Then, applying an alternative electrical voltage to the piezoelectric ring, a traveling wa...
متن کامل